Homomorphisms (D+F1.6)

When we talk about functions between groups, it makes sense to limit our scope to functions that preserve the group operation (morphisms in the category of groups). More precisely:

Def: let G onel H be groups. A function
$$\mathcal{Y}: \mathcal{G} \rightarrow \mathcal{H}$$
 is
a homomorphism if \mathcal{V} x, y \in \mathcal{G}, $\mathcal{Y}(xy) = \mathcal{Y}(x)\mathcal{Y}(y)$.
multiplied multiplied multiplied
in \mathcal{H}

Ex: Consider the function
$$Y: \mathbb{Z} \to D_{2n}$$
 defined
 $w/addition$
 $Y(a) = r^{a}(=r^{a} (mod n)).$

Thun for a, be \mathbb{Z} , $\mathcal{Y}(a+b) = r^{a+b} = r^{a}r^{b} = \mathcal{Y}(a)\mathcal{Y}(b)$, so it is a homomorphism.

EX: Considur the function
$$\Psi: D_{e} \rightarrow \frac{\pi}{4\pi}$$
 defined
 $\Psi(s^{i}r^{j}) = \overline{j}.$

Is this a homomorphism?

 $\Psi(sr)+\Psi(sr) = \overline{1} + \overline{1} = \overline{2}$, but $\Psi(srsr) = \Psi(srr^3s) = \Psi(1) = \overline{0}$, so it's <u>not</u> a homomorphism.

Ex: Define The map
$$exp: \mathbb{R} \longrightarrow \mathbb{R}^+$$
 by $exp(x) = e^x$.
 $w/$ addition $w/$ multiplication
(check That
This is a group!)
Then $exp(x+y) = e^{x+y} = e^x e^y = exp(x)exp(y)$, so it's a homomorphism.

In fact, it's a bijection as well! We have an inverse homomorphism: In: $\mathbb{R}^+ \to \mathbb{R}$, the natural logarithm.

Notice that This means \mathbb{R}^+ and \mathbb{R} have the same set of elements (renamed), and the same exact group structure. That is, They are "isomorphic":

Det: An <u>isomorphism</u> of groups is a bijective homomorphism. If $Y: G \rightarrow H$ is an isomorphism, we say G and H are <u>isomorphic</u>, denoted $G \cong H$.

Note that if G is any group, The identity $id: G \rightarrow G$ is an isomorphism, but not necessarily the only isomorphism $G \rightarrow G$:

Ex: Define
$$\Psi: \frac{\pi}{4\pi} \rightarrow \frac{\pi}{4\pi}$$
 by
 $0 \mapsto 0$
 $1 \mapsto 3$
 $2 \mapsto 2$
 $3 \mapsto 1$

This is a nonidentity isomorphism.

In fact:

Claim: G an abelian group, $\Psi: G \rightarrow G$ defined $\Psi(\pi) = \pi^{-1}$ is an isomorphism. (In fact, if and only if!)

Pf:
$$\Upsilon(xy) = (xy)^{-1} = x^{-1}y^{-1} = \Upsilon(x)\Upsilon(y)$$
.
See HW

Note: If G=H, then any property of G that depends only on The group structure will also hold for H. e.g.

- |G| = |H]
- G is abelian => H abelian
- $x \in G$ $|x| = |\varphi(x)|$
- $G' \in G \iff \Psi(G') \in H$.

Ex: The quaternion group,
$$Q_8$$
 is defined
 $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$

where $|\cdot a = a \cdot | = a \quad \forall \quad a \in Q_8$ • $(-1)(-1) = |_{J} (-1) \cdot a = a \cdot (-1) = -a \quad \forall \quad a \in Q_8.$ • $(i^2 = j^2 = k^2 = -1)$ • $i \cdot j = k, \quad j \cdot k = i, \quad k \cdot i = j$

Note that $|\pm i| = |\pm j| = |\pm k| = 4$. In particular, no element has order 8, so $\bigcirc_8 \notin \frac{\pi}{8\pi}$.